Ways to Prove a Quadrilateral is a Parallelogram

- Both pairs of opposite sides parallel
- Both pairs of opposite sides congruent
- One pair of opposite sides BOTH congruent and parallel
- Both pairs of opposite angles congruent
- An angle is supplementary to both consecutive angles
- The diagonals bisect eachother

In quadrilateral \overrightarrow{ABCD} , \overrightarrow{AC} is a diagonal, $\overrightarrow{AB} \cong \overrightarrow{CD}$, and $\overrightarrow{AD} \cong \overrightarrow{BC}$. Is \overrightarrow{ABCD} a parallelogram? Explain.

SOLUTION

Is ABCD a parallelogram? Justify your reasoning.

A. Teo sketches a design of a quadrilateral-shaped building. If $\angle 1$ is supplementary to $\angle 2$ and $\angle 4$, is his design a parallelogram?

B. Teo sketches a second design in which $\angle 1$ is congruent to $\angle 3$, and $\angle 2$ is congruent to $\angle 4$. Is that design a parallelogram?

2	3
\	1
\1	4

SOLUTION

iter your answer.

For what values of r and s is WXYZ a parallelogram?

OLUTION

$$4r+7=7r+1$$
 $6=3r$
 $r=2$

$$4r+7=7r+1$$
 $2s-2=s+5$
 $6=3r$ $5-2=5$
 $r=2$ $5=7$

For what values of a and b is RSTU a parallelogram?

OLUTION

and b is RSTU a parallelogram?

$$Sa = 3c + 14$$
 $Ub+1 = 3b+37$
 $Ac = 14$
 $b+1 = 37$
 $C(4b+1)^{\circ}$
 $C(3a+14)^{\circ}$
 $C(4b+1)^{\circ}$
 $C(3a+14)^{\circ}$
 $C(4b+1)^{\circ}$
 $C(4b+1)^{\circ}$
 $C(4b+1)^{\circ}$
 $C(4b+1)^{\circ}$
 $C(4b+1)^{\circ}$
 $C(4b+1)^{\circ}$
 $C(4b+1)^{\circ}$

3. a. If x = 25 and y = 30, is *PQRS* a parallelogram?

Enter your answer.

$$P = \frac{Q}{(5y_{140} - 10)^{\circ} (x + 15)^{\circ}} R$$

$$P = \frac{(2x - 10)^{\circ} (3y + 50)^{\circ}}{U_{0}} S$$

3. b. If g = 14 and h = 5, is ABCD a parallelogram?

Enter your answer.

Given: $\overline{AX} \cong \overline{CX}$ and $\overline{BX} \cong \overline{DX}$

Prove: ABCD is a parallelogram

Proof:

Statements

- 1) AX = CX BX=DX
- 2) × is midpt of AC
- 3) X is midpt of BD

Reasons

- 1) Given
- 2) Def of midpt
- 3) Defofmidpt
- 4) Diagonals bisact

4. For what values of p and q is ABCD a parallelogram?

$$7p+1=5p+3$$
 $3e+1=2e+3$
 $2p=4$ $e=2$
 $p=2$

Is PQRS a parallelogram? Explain.

Is WXYZ a parallelogram? Explain. OLUTION V Z